Рейтинг
0.00
голосов:
0
avatar

Машинное обучение  

Как применять искусственный интеллект в бизнесе


Интересное выступление Александра Хайтина (исполнительный директор Yandex Data Factory) на конференции «Искусственный интеллект в управлении непрерывным производством», совместно проводимой компаниями Yandex Data Factory и «Газпром нефть».

Тезисы выступления

( Читать дальше )

Глубокие нейронные сети как следующий этап развития программного обеспечения

ИНС

Многие люди воспринимают нейронные сети как «ещё один инструмент машинного обучения». У них есть свои плюсы и минусы. Они популярны. И, разумеется, их можно использовать, чтобы выиграть соревнования по машинному обучения (Kaggle).

Однако, Andrej Karpathy (раньше — исследователь из OpenAI, сейчас — директор по ИИ в Tesla), считает, что подобный взгляд на нейронные сети — слишком поверхностен.
Рассматривать нейронные сети, как просто ещё один классификатор — это не видеть леса за деревьями.
На самом деле, современный успех нейронных сетей, представляет собой начало фундаментального сдвига в том, как мы пишем программное обеспечение. Это Software 2.0.

( Читать дальше )

Особенности применения машинного обучения в промышленности, индустрии моды и банковских услугах


Видео с конференции Data & Science, на котором эксперты рассказывают о своём опыте работы с большими данными, машинном обучении и их применении в науке, экономике и других сферах жизни.

Очень интересно первое выступление — Эмели Драль из Yandex Data Factory, рассказывает о подводных камнях, которые возникают при использовании машинного обучения в промышленности (выбор нефтяных скважин для гидроразрыва пласта, контроль разделения газа на фракции, предсказание дефектов в продуктах металлургического производства (слябах)).

Этапы проекта:

( Читать дальше )

Проблемы применения машинного обучения для решения реальных задач

Deep learning
Машинное обучение (ML), Искусственный Интеллект (AI), нейронные сети (NN) — эти термины в последнее время время не сходят с новостных заголовков и этот шум даже не думает умолкать.
Большие данные, вычислительные мощности графических карт (GPU) и огромное количество научных исследований — позволили глубокому обучению стать технологией меняющей мир.

Доступность фреймворков машинного обучения в виде открытого программного обеспечения, от ведущих исследовательских групп (от крупных компаний: TensorFlow от Google, PyTorch от Facebook, CNTK от Microsoft) позволяют сейчас быстро начать самостоятельно экспериментировать с глубокими нейронными сетями.

Однако, эти возможности, благодаря которым, сейчас очень просто начать тренировать свою собственную Искусственную Нейронную Сетку, могут ввести в заблуждение.
Ведь, чтобы использовать машинное обучение для решения своих задач или задач бизнеса, требуется учесть множество важных нюансов.

( Читать дальше )

Создание покемонов с помощью генеративных состязательных сетей


Генеративные состязательные сети (Generative Adversarial Networks — GAN) — потрясающий тип нейронных сетей, моделирующих генерацию данных.
Много данных для обучения, много параметров и требуемых вычислений, но, в итоге, можно научить нейронную сеть распределению в данных и начать генерировать самые разные целевые данные: покемонов, пиццу и даже лекарства.

( Читать дальше )

Что не так со свёрточными нейронными сетями?


Свёрточные нейронные сети (convolutional neural networks (CNNs)) показывают отличные результаты по распознаванию.
Однако, по словам Хинтона (Geoffrey Hinton), на самом деле очень жаль, что CNN работают так хорошо, потому что у них есть серьёзные недостатки, от которых, по его мнению, «будет трудно избавиться».

Существующие проблемы свёрточных нейронных сетей:

( Читать дальше )

GAN — генеративные состязательные сети

архитектура GAN
GAN — Generative Adversarial Networks — генеративные состязательные сети.

Пока мне не удалось найти устоявшегося русскоязычного названия.
Другие варианты:
генеративные соревновательные сети
порождающие соперничающие сети
порождающие соревнующиеся сети

Генеративные сети — это очень интересный класс нейронных сетей, которые учатся генерировать определённые объекты. Сейчас, подобные сети очень популярны и используются для самых разных задач — от генерирования пугающих картинок и суперразрешения до поиска лекарств от рака.

( Читать дальше )

Будущее глубокого обучения


Обратное распространение ошибки имеет фундаментальное значение для глубокого обучения.
Хинтон (изобретатель) недавно сказал, что мы должны «выбросить всё это и начать всё заново».
В этом видео, Siraj Raval рассказывает, как работает обратное распространение ошибки и как оно используется в глубоком обучении.
В завершение — он даёт 7 интересных направлений исследований.


( Читать дальше )

Дмитрий Ветров. Введение в байесовские методы


Введение в байесовские методы применительно к машинному обучению и глубоким нейронным сетям.

( Читать дальше )