How to Use the SOINN Software:
User’s Guide (Version 1.0)

Kazuhiro Yamasaki* Naoya Makibuchi' Furao Shen*

Osamu Hasegawa?

October 15, 2010

Abstract

The Self-Organizing Incremental Neural Network (SOINN) is an unsu-
pervised classifier that is capable of online incremental learning. Studies
have been performed not only for improving the SOINN, but also for
applying it to various problems. Furthermore, using the SOINN, more
intelligent functions are achieved, such as association, reasoning, and so
on. In this paper, we show how to use the SOINN software and to apply
it to the above problems.

Key Words: Self-Organizing Incremental Neural Network, SOINN software

1 Introduction

The Self-Organizing Incremental Neural Network (SOINN) [1] is an online unsu-
pervised mechanism proposed by Shen and Hasegawa which is capable of incre-
mental learning, that is, it can learn new knowledge without destroying the old
learned knowledge. Because the neurons in the network are self-organized, it is
not necessary to define the network structure and size in advance. In addition,
this system is robust to noise.

Studies have been performed not only for improving the SOINN, but also for
applying it to various problems. For example, an Enhanced-SOINN (ESOINN)
[2] has succeeded in reducing the number of parameters and layers of the original
SOINN from two layers and eight parameters to one layer and four parameters.
Furthermore, it is capable of separating clusters with a high-density overlap. An
Adjusted SOINN Classifier (ASC) [3] automatically learns the number of proto-
types needed to determine the decision boundary;, thus, very rapid classification
is achieved.

*Department of Computational Intelligence and Systems Science, Tokyo Institute of Tech-
nology, yamasaki.k.ac@m.titech.ac. jp

tDepartment of Computational Intelligence and Systems Science, Tokyo Institute of Tech-
nology, makibuchi.n.aa@m.titech.ac.jp

fThe State Key Laboratory for Novel Software Technology, Nanjing University,
frshen@nju.edu.cn

$Imaging Science and Engineering Laboratory, Tokyo Institute of Technology,
hasegawa.o.aa@m.titech.ac. jp, http://www.haselab.info/

SN— —
& Self Organizing Incremental Neural Nm':‘ + Self Organizing Incremental Neumlm-:-m

File(F) Input(I) Config(C) File(F) Input(I) Config(C)

’E)utput

Input : 460400 3 Input : 1157400
@ WYy
» »,

(a) Input : Gaussian (b) Input : Concentric Circle

Figure 1: Execution examples.

Using the SOINN, more intelligent functions can be achieved, such as asso-
ciation, reasoning, and so on. An associative memory (AM) system using the
SOINN has been proposed [4], which is called the SOIAM. This system learns a
pair of vectors (a key vector and an associative vector), which makes it possible
to realize the association between them. On the other hand, a novel AM system
consisting of a three-layer architecture has also been proposed [5]. This system
realizes the association of both static information and temporal sequence infor-
mation. In addition, a pattern-based reasoning system using the SOINN has
been also proposed [6], which achieves reasoning with the pattern-based if-then
rules of propositional logic.

The SOINN is also applied to fields such as robotics (e.g., language acquisi-
tion [7, 8], task planning [9, 10], the SLAM system [11], and robot navigation
[12]).

The SOINN software is available here!. We provide an application and the
source code written in the C++ language of the SOINN with a single layer and
two parameters, which has been introduced by [3] and employed in [4, 6]. In
this paper, we show how to use this software, and then describe briefly how to
extend the source code into one of [4] or [6].

2 Application

You can acquire the SOINN software as a solution file of Microsoft Visual Studio
2005. To run the SOINN application, open and build the “SOINN.sln” file,
then execute the resulting program. In doing so, windows containing the menu,
the Input, and the Output are displayed, as shown in Figure 1. The menu
window provides the functions for the designation of the data set, the definition
of parameters and noise, and so on. The Input window shows how the data
set is input continuously, specifically online, as well as the current number of
input data items. The Output window shows how the network grows in a self-
organizational way with each input data item, and the current number of nodes
and classes in the network.

If you select “Input > Synthetic data > Gaussian or Concentric circle,” data
generated from the two gaussian or concentric circles is input into the network

Thttp://www.haselab.info/soinn-e.html

S —
" Self Organizing Incremental Neural NW
Setting parameters @ File(F) Input(l) Config(C)

Output
SOINN parameters

Remove node time : | 100
Aee dead : 30

Ihput data o

Noise : 0.1

°g
L J
L

.
»
>
L
L Q}’ =

oK | Gancel I

D
« random noise

Figure 2: Screen of Setting parame- Figure 3: Data set including noise.
ters.

over time. The SOINN displays the topological structure of the input data, so
that it regards a set of all nodes connected with edges as a cluster. This makes
it possible to classify unsupervised data. For example, Figure 1(b) shows the
classified data of each circle using different colors. At the same time, the SOINN
shows the probabilistic density of the input data. For example, in Figure 1(a), it
is found that nodes on the area around the center of the gaussian are distributed
in high density and vice versa. In addition, the SOINN realizes the compression
of the input data by finding typical prototypes for a large-scale data set. In fact,
in Figures 1(a) and 1(b), the numbers of input data are 460,400 and 1,157,400,
and the numbers of output data are 124 and 242.

The parameters necessary for the SOINN can be set by selecting “Config >
Setting parameters,” as shown in Figure 2. In this window, not only the SOINN
parameters, but also the amount of noise added to the data set, can be defined.
For example, as shown in Figure 2, if “Noise” is defined as 0.1, 10% random
noise is added to the data set. However, as shown in Figure 3, it is found that
the SOINN adequately displays the distribution of the original data set without
being affected by noise.

3 SOINN API

A brief class diagram is depicted in Figure 4. The SOINN API consists of six core
files, CSOINN.cpp/.h, CNode.cpp/.h, and CEdge.cpp/.h. The class CSOINN
represents the entire SOINN system. The CNode is the node (i.e., neuron) in the
network. You can retrieve the information of the node using the API functions
of this class. The CEdge is the edge between the two nodes.

Following are explanations of the SOINN API functions:

e CSOINN::InputSignal() represents the algorithm? of the SOINN for one
given input data.

e CSOINN::Classify() assigns the class ID to all the nodes according to
the current network structure.

2This function includes processes such as the addition or deletion of nodes.

CSOINN CNode

+| nput Si gnal (si gnal : doubl e *) 9.~ +Get Si gnal ()
+Cl assify() +Get O ass() ONode. cpp/ . h ﬁ
+Reset (di mensi on: i nt, renoveNodeTi ne: i nt,

deadAge:int)
+Get NodeNun() -1—
+CGet A assNun()
+CGet Node(node: int)
+Get O assFronNode(node: i nt) 0..* CEdge
+SaveNet wor kDat a(fi | ename: char *)

+LoadNet wor kDat a(fi | ename: char *)
CSO NN. cpp/ . h | CEdge. cpp/ . h

Figure 4: Class diagram of the SOINN software.

e CSOINN::Reset() resets the parameters of the SOINN (i.e., dimension, re-
moveNodeTime, and deadAge). Note that, in the current implementation,
all the nodes and edges in the network are also removed.

e CSOINN: :GetNodeNum() returns the number of nodes in the current net-
work.

e CSOINN: :GetClassNum() returns the number of classes in the current net-
work.

e CSOINN::GetNode() returns the CNode instance with the same ID? as the
function’s argument.

e CSOINN: :GetClassFromNode () returns the class ID of the CNode instance
with the same ID as the function’s argument.

e CSOINN: :SaveNetworkData() saves the current network to a given file.
e CSOINN: :LoadNetworkData() loads any network from a given file.

e CNode: :GetSignal() returns the weight vector of the CNode instance it-
self.

e CNode: :GetClass () returns the class ID of the CNode instance itself.

4 Usage Example

In this section, we show how to use the API of the SOINN software through the
sample code (Listing 1) of the 1-Nearest Neighbor (1-NN) algorithm. Note that
it is necessary to define the functions Distance() and LoadSignal().

First, to use the SOINN, call the CSOINN: :CSOINN() function. This con-
structor returns the CSOINN instance. Next, to perform the learning process of
the SOINN, call the CSOINN: : InputSignal() function. The argument of this
function represents one training data vector. You then call the CSOINN: :Classify ()
function to assign all nodes in the current network with the class ID.

Next, to run the 1-NN algorithm, calculate the distance between the test data
and the weight vector of each of the nodes in the current network, where each

3The SOINN software assigns an ID to all the nodes in the current network.

© 0N oA W N

AR R A 0 W W W W W WWWWNNNNNNNNNNS SR B B e e
WO OO0 E BN R O©®®NNO00A@WNR,O©®®NOWA®N O

weight vector is returned by the CNode: : GetSignal () function. Finally, use the
functions CNode: : GetClass () or CSOINN: : GetClassFromNode () to retrieve the
class ID.

Listing 1: Sample code of the 1-NN using the SOINN API.

// DIMENSION : the number of dimension of the input vector
// REMOVE_NODE_TIME : the predefined threshold

/7 to remove edges with an old age
// DEAD_AGE : the predefined parameter
/7 to delete nodes having only one neighbor

// TRAINING_DATA_FILE : the name of training data file
// TEST_DATA_FILE : the name of test data file

// *signal : the training data vector
// *targetSignal : the test data wector
/7

// Distance() : the distance function (typically Euclidean distance)
// LoadSignal () : the function to get ome training/test data wvector

CSOINN *pSOINN;
pSOINN = new CSOINN(DIMENSION, REMOVE_NODE_TIME, DEAD_AGE);

double *signal;

while ((signal = LoadSignal(TRAINING_DATA_FILE)) != NULL) {
pSOINN->InputSignal(signal);

}

pSOINN->Classify ();

// 1-NN algorithm.
double minDist = CSOINN::INFINITY;
int nearestID = CSOINN::NOT_FOUND;

double *targetSignal = LoadSignal(TEST_DATA_FILE);
for (int i = 0; i < pSOINN->GetNodeNum(); i++) {

double *nodeSignal = pSOINN->GetNode(i)->GetSignal();
double dist = Distance(targetSignal, nodeSignal);

if (minDist > dist) {
minDist = dist;
nearestID = i;

}

int nearestClassID = pSOINN->GetNode(nearestID)->GetClass ();
printf ("Nearest Node ID : %d, Class ID : %d.\n", nearestID, nearestClassID);

delete pSOINN;

5 Extensions

In this section, we briefly describe how to extend the SOINN to [2, 3, 4, 5, 6].
In the SOIAM [4], the dimension of the association pair must be defined in
CSOINN and CNode. Furthermore, it is necessary to define an appropriate dis-
tance function, a recall function, and so on. Listing 2 shows the sample code of
the additional implementation for the SOTAM. In the other AM system consist-
ing of a three-layer architecture [5], the new class representing an input layer, a
memory layer, and an associative layer must be defined. In a pattern-based rea-
soning system [6], as well as in the SOIAM, some functions, such as a distance
function, also need to be defined. In the ESOINN [2], it is necessary to modify
the CSOINN: : InputSignal () function to enable this system to separate clusters
with high-density overlap. In addition, two new parameters to determine the

[
= O © K NO oA W e

I I T
AW N RO 0O oA ®N

25

noise node must be added in CSOINN. In the ASC [3], the multiple CSOINN in-
stances that correspond to the classes of the data set are required, and the new
class to perform the k-means algorithm for the stabilization of the ASC must be

defined. The functions to reduce noisy and unnecessary prototype nodes must
also be defined.

Listing 2: Sample code of the additional implementation of the SOIAM.

class CSOIAM : public CSOINN {

public
std::vector<CNode *> *Recall(double *signal, bool isDirect);

private
int keyDim;
int assocDim;
double Distance(double *signall, double #*signal2, bool isDirect);
/% === x/

std::vector<CNode *> *CSOIAM::Recall(double *signal, bool isDirect)

int classNum = GetClassNum();
int nodeNum = GetNodeNum();

std::vector<std::pair<double, int>> minPair(classNum);
for (int i = 0; i < nodeNum; i++) {

CNode *node

GetNode(i);

int classID = node->GetClass();
double distance = Distance(signal, node->GetSignal(), isDirect);
if (minPair[classID].first > distance) {
minPair[classID].first = distance;
minPair[classID].second = i;
}
}
std::vector<CNode *> *recalledNodes = new std::vector<CNode *>(classNum);
for (int i = 0; i < classNum; i++) {
recalledNodes->at(i) = GetNode(minPair[i].second);
}

return recalledNodes;

*/
bool isDirect)
{
int beginPtr = (isDirect) ? 0 : keyDime;
int endPtr = (isDirect) ? keyDim : (keyDim + assocDim);
int normConst = (isDirect) ? keyDim : assocDim;
double distance = 0.0;
for (int i = beginPtr; i < endPtr; i++) {
double tmp = (signall[i]l - signal2[i]);
distance += (tmp * tmp);
}
distance = sqrt(distance / normConst);
return distance;
}

Acknowledgement

This study was supported by the Industrial Technology Research Grant Pro-
gram in 2010 from the New Energy and Industrial Technology Development
Organization (NEDO) of Japan.

References

[1] Shen, F., Hasegawa, O.: An incremental network for on-line unsupervised
classification and topology learning. Neural Networks, vol.19, No.1, pp.90—
106 (2005)

[2] Shen, F., Ogura, T., Hasegawa, O.: An enhanced self-organizing incre-
mental neural network for online unsupervised learning. Neural Networks,
vol.20, No.8, pp.893-903 (2007)

[3] Shen, F., Hasegawa, O.: A fast nearest neighbor classifier based on self-
organizing incremental neural network. Neural Networks, vol.21, No.10,
pp-1537-1547 (2008)

[4] Sudo, A., Sato, A., Hasegawa, O.: Associative memory for online learning
in noisy environments using self-organizing incremental neural network.
IEEE Trans. on Neural Networks, vol.20, No.6, pp.964-972 (2009)

[5] Shen, F., Yu, H., Kasai, W., Hasegawa, O.: An Associative Memory Sys-
tem for Incremental Learning and Temporal Sequence. Proc. of the 2010
International Joint Conference on Neural Networks. to appear (2010)

[6] Shen, F., Sudo, A., Hasegawa, O.: An online incremental learning pattern-
based reasoning system. Neural Networks, vol.23, No.1, pp.135-143 (2010)

[7] He, X., Kojima, R., Hasegawa, O.: Developmental Word Grounding
through A Growing Neural Network with A Humanoid Robot. IEEE Trans.
SMC-Part B, vol.37, No.2, pp.451-462 (2007)

[8] He, X., Ogura, T., Satou, A., Hasegawa, O.: Developmental Word Ac-
quisition And Grammar Learning by Humanoid Robots through A Self-
Organizing Incremental Neural Network. IEEE Trans. SMC-Part B, vol.37,
No.5, pp.1357-1372 (2007)

[9] Makibuchi, N., Shen, F., Hasegawa, O.: Online Knowledge Acquisition and
General Problem Solving in a Real World by Humanoid Robots. 1st SOINN
Workshop, in conjunction with ICANN, pp.551-556 (2010)

[10] Makibuchi, N., Shen, F., Hasegawa, O.: General Problem Solving System
in a Real World and Its Implementation on a Humanoid Robot, IEICE
Trans. Inf. & Sys. [in Japanese], volJ93-D, No.6, pp.960-977 (2010)

[11] Kawewong, A., Honda, Y., Tsuboyama, M., Hasegawa, O.: Reasoning on
the Self-Organizing Incremental Associative Memory for Online Robot Path
Planning. IEICE Trans. Inf. & Sys., vol.E93-D, No.3, pp.569-582 (2010)

[12] Tangruamsub, S., Tsuboyama, M., Kawewong, A., Hasegawa, O.: Un-
guided Robot Navigation using Continuous Action Space. 1st SOINN
Workshop, in conjunction with ICANN, pp.528-534 (2010)

