-
Использование свёрточной сети на Raspberry Pi для подсчёта пчёл
Вручную разметив фотографии пчёл и используя нейросетевую архитектуру u-net на одноплатнике Raspberry Pi, автору удалось подсчитывать пчёл на входе в улей. Частичное обучение Так как с камеры можно получить большое количество изображений, то можно воспользоваться интересным трюком: частичным обучением, оно же — обучение с частичным привлечением учителя (Semi-supervised learning). В основе этого трюка лежит очень…
-
Использование TensorFlow для распознавания ваших объектов
Чтобы научить нейронную сетку на TensorFlow распознавать нужные вам объекты, вам понадобится несколько сотен изображений этих объектов. Эти изображения можно найти и скачать из интернета, либо сделать собственные фотографии.
-
Установка TensorFlow на Raspberry Pi 3
TensorFlow можно собрать из исходников прямо на самой Raspberry Pi 3, но на сборку уйдёт около 10 часов.
-
Глубокое обучение и C++
Выступление Peter Goldsborough с рассказом о глубоком обучении и С++.
-
Однопиксельная атака для обмана нейронных сетей
С развитием технологий ИИ и повсеместным внедрением нейронных сетей — нужно постоянно помнить о том, что подобные системы самым неожиданным образом могут быть введены в заблуждение. Например, вот отличный пример — добавление всего одного определённого пикселя на изображение, позволяет добиться, чтобы максимизировать вероятность ошибки системы распознавания.
-
Машинное обучение и нейронаука
Как связаны машинное обучение и нейронаука? Например, нейронные сети были разработаны по прообразу устройства мозга. Siraj Raval рассказывает об открытиях в области нейронауки, которые помогли совершиться прорывам в машинном обучении.
-
uTensor — AI на микроконтроллерах
Интересный проект — uTensor — ставит перед собой задачу запуска нейронных сетей и глубокого обучения на микроконтроллерах.
-
Andrew Ng: Искусственный интеллект — это новое электричество
Видео с выступления профессора Andrew Ng на стэнфордском форуме MSx Future, где он рассказывает как искусственный интеллект трансформирует индустрию. Интересное правило, которое Эндрю Ын, предлагает, чтобы понять — можно ли использовать искусственный интеллект для решения какой-либо задачи: если обычный человек может решить задачу, подумав над ней менее секунды, мы, вероятно, сможем автоматизировать её решение при…
-
Разъяснение Numenta
Компания Numenta пытается создать сильный ИИ, копируя структуру новой коры головного мозга — неокортекса. В этом видео, Siraj Raval рассказывает о том как работает иерархическая система временной памяти (Hierarchical Temporal Memory — HTM). Рассматривает технологический стек HTM и сравнивает его с технологиями глубокого обучения.
-
Разъяснение Keras
Каков наилучший способ начать глубокое обучение? Разумеется, это библиотека Keras! Это библиотека высокого уровня для глубокого обучения, которая позволяет очень легко реализовывать модели глубоких нейронных сетей всех видов.
Преимуществ нет, за исключением читабельности: тип bool обычно имеет размер 1 байт, как и uint8_t. Думаю, компилятор в обоих случаях…